The literature of brass pedagogy has identified the typical posture problems found in trumpet players and arrived at a consensus regarding body optimal alignment. The suggestion is that poor posture may not only hinder performance but also lead to long-term injuries. This is supported by a growing body of evidence from fields as diverse as biomechanics and pervasive healthcare. After a review of the literature, we focus on the design process used to develop Postrum; a wearable system for trumpet players that uses real-time haptic feedback to encourage better posture. In response to the multifaceted nature of the activity, the design process combines two aspects from different fields: the 'sketching in hardware' approach developed by Moussette and Dore in the context of Interaction Design (IxD), and sensing technologies from the New Interfaces for Musical Expression (NIME) field. We follow this with a brief overview of the Postrum system. This includes a 3D camera, custom software that compares the posture of the player to an idealized model, and two vibrotactile arrays mounted on the torso. Three different types of problem can be detected, their categories based on the literature. If player posture deviates from the ideal, haptic feedback is applied, with directional pulses used to indicate the corrective action needed. Finally, we offer some remarks about our experiences with the system in relation to player engagement and performance, discuss a range of emerging design issues, and outline some implications for what Hochenbaum and Kapur term the 'practice room of the future.'